Steiner Systems
A Steiner system \(S(t,k,v)\) is a collection of k-sized subsets (“blocks”) of the numbers 1 to \(v\). These collections are special because every t-sized subset of the numbers 1 to \(v\) are in exactly one block.
For example, here is a \(S(2,3,7)\) system (also known as the Fano plane):
{1,2,3}
{1,4,5}
{1,6,7}
{2,4,6}
{2,5,7}
{3,4,7}
{3,5,6}
I was introduced to Steiner systems from this review article. There is also good information on Dan Gordon’s page.
Some cool facts about Steiner systems:
- If you have a Steiner system \(S(t,k,v)\), you can make a Steiner system \(S(t-1, k-1, v-1)\) by choosing all blocks with a certain number, and deleting that number.
- Steiner systems follow divisibility rules: \(S(t,k,v)\) only can exist if \({k-i \choose t-i}\) divides \({v-i \choose t-i}\) for all \(i \in \{0,\cdots,t-1\}\).
Table of \(S(t, t+1, v)\)
Here are the divisibility rules for small \(t\) when \(k = t+1\):
Divisibility | |
---|---|
\(t=1\) | \(v \ne 1\text{ mod }2\) |
\(t=2\) | \(v \ne 0\text{ mod }2\) and \(v \ne 2 \text{ mod }3\) |
\(t=3\) | \(v \ne 1 \text{ mod }2\) and \(v \ne 0 \text{ mod }3\) |
\(t=4\) | \(v \ne 0 \text{ mod }2\) and \(v \ne 1 \text{ mod }3\) and \(v \ne 4\text{ mod } 5\) |
\(t=5\) | \(v \ne 1\text{ mod }2\) and \(v \ne 2 \text{ mod }3\) and \(v \ne 0\text{ mod } 5\) |
\(t=6\) | \(v \ne 0 \text{ mod }2\) and \(v \ne 0 \text{ mod }3\) and \(v \ne 1\text{ mod } 5\) and \(v \ne 6\text{ mod 7}\) |
I’ve listed a table below of small values of \(t\) and \(v\).
- Some values of \((t, t+1, v)\) have no associated Steiner system:
- ”.”, “..”, “…”, “….”: No Steiner system can exist because of divisibility rules.
- ”-“: These values do not form a valid Steiner system; \(t\) must be smaller than \(v\).
- “x”: There are no Steiner systems S(4, 5, 15) or S(4, 5, 17), as computationally verified here.
- Some values do have a Steiner system:
- “Trivial”: There is always a Steiner system \(S(t,k,k)\) with one block including all numbers from 1 to k.
- “Pairs”: If \(v\) is even, then pairing all numbers from 1 to v forms a Steiner system \(S(1, 2, v)\).
- “✔️”: There are Steiner systems at each \(v\) that satisfies the divisibility rules, as shown for t=2 and for t=3.
- “M\(_{12}\)”, “M\(_{11}\)”: The Steiner system S(5, 6, 12) corresponds to the Mathieu group M\(_{12}\), which induces S(4, 5, 11) and Mathieu group M\(_{11}\).
- “PSL\(_2\)(23)”: There is a known Steiner system S(5, 6, 24), as described here and here, which induces S(4, 5, 23).
- KNOWN: We know of Steiner systems at S(5, 6, 36) and S(5, 6, 48), as listed here and here.
- For the entries marked “?”, we simply don’t know if there’s a Steiner system here!
\(t=1\) | \(t=2\) | \(t=3\) | \(t=4\) | \(t=5\) | \(t=6\) | \(t=7\) | |
---|---|---|---|---|---|---|---|
\(v=1\) | - | - | - | - | - | - | - |
\(v=2\) | Trivial | - | - | - | - | - | - |
\(v=3\) | . | Trivial | - | - | - | - | - |
\(v=4\) | Pairs | . | Trivial | - | - | - | - |
\(v=5\) | . | .. | . | Trivial | - | - | - |
\(v=6\) | Pairs | . | .. | . | Trivial | - | - |
\(v=7\) | . | ✔️ (Fano) | . | .. | . | Trivial | - |
\(v=8\) | Pairs | . | ✔️ | . | .. | . | Trivial |
\(v=9\) | . | ✔️ | . | … | . | .. | . |
\(v=10\) | Pairs | . | ✔️ | . | … | . | .. |
\(v=11\) | . | .. | . | M\(_{11}\) | . | … | . |
\(v=12\) | Pairs | . | .. | . | M\(_{12}\) | . | … |
\(v=13\) | . | ✔️ | . | .. | . | …. | . |
\(v=14\) | Pairs | . | ✔️ | . | .. | . | …. |
\(v=15\) | . | ✔️ | . | x | . | .. | . |
\(v=16\) | Pairs | . | ✔️ | . | x | . | .. |
\(v=17\) | . | .. | . | x | . | x | . |
\(v=18\) | Pairs | . | .. | . | x | . | x |
\(v=19\) | . | ✔️ | . | .. | . | x | . |
\(v=20\) | Pairs | . | ✔️ | . | .. | . | x |
\(v=21\) | . | ✔️ | . | ? | . | .. | . |
\(v=22\) | Pairs | . | ✔️ | . | ? | . | .. |
\(v=23\) | . | .. | . | PSL\(_2\)(23) | . | ? | . |
\(v=24\) | Pairs | . | .. | . | PSL\(_2\)(23) | . | ? |
\(v=25\) | . | ✔️ | . | .. | . | ? | . |
\(v=26\) | Pairs | . | ✔️ | . | .. | . | ? |
\(v=27\) | . | ✔️ | . | ? | . | .. | . |
\(v=28\) | Pairs | . | ✔️ | . | ? | . | .. |
\(v=29\) | . | .. | . | … | . | ? | . |
\(v=30\) | Pairs | . | .. | . | … | . | ? |
\(v=31\) | . | ✔️ | . | .. | . | … | . |
\(v=32\) | Pairs | . | ✔️ | . | .. | . | … |
\(v=33\) | . | ✔️ | . | ? | . | .. | . |
\(v=34\) | Pairs | . | ✔️ | . | ? | . | .. |
\(v=35\) | . | .. | . | KNOWN | . | ? | . |
\(v=36\) | Pairs | . | .. | . | KNOWN | . | ? |
\(v=37\) | . | ✔️ | . | .. | . | ? | . |
\(v=38\) | Pairs | . | ✔️ | . | .. | . | ? |
\(v=39\) | . | ✔️ | . | … | . | .. | . |
\(v=40\) | Pairs | . | ✔️ | . | … | . | .. |
\(v=41\) | . | .. | . | ? | . | … | . |
\(v=42\) | Pairs | . | .. | . | ? | . | … |
\(v=43\) | . | ✔️ | . | .. | . | ? | . |
\(v=44\) | Pairs | . | ✔️ | . | .. | . | ? |
\(v=45\) | . | ✔️ | . | ? | . | .. | . |
\(v=46\) | Pairs | . | ✔️ | . | ? | . | .. |
\(v=47\) | . | .. | . | KNOWN | . | ? | . |
\(v=48\) | Pairs | . | .. | . | KNOWN | . | ? |
\(v=49\) | . | ✔️ | . | .. | . | ? | . |
\(v=50\) | Pairs | . | ✔️ | . | .. | . | ? |
\(v=51\) | . | ✔️ | . | ? | . | .. | . |
\(v=52\) | Pairs | . | ✔️ | . | ? | . | .. |
\(v=53\) | . | .. | . | ? | . | ? | . |
\(v=54\) | Pairs | . | .. | . | ? | . | ? |
\(v=55\) | . | ✔️ | . | .. | . | …. | . |
\(v=56\) | Pairs | . | ✔️ | . | .. | . | …. |
\(v=57\) | . | ✔️ | . | ? | . | .. | . |
\(v=58\) | Pairs | . | ✔️ | . | ? | . | .. |
\(v=59\) | . | .. | . | … | . | ? | . |
\(v=60\) | Pairs | . | .. | . | … | . | ? |
\(v=61\) | . | ✔️ | . | .. | . | … | . |
\(v=62\) | Pairs | . | ✔️ | . | .. | . | … |
\(v=63\) | . | ✔️ | . | ? | . | .. | . |
\(v=64\) | Pairs | . | ✔️ | . | ? | . | .. |
\(v=65\) | . | .. | . | ? | . | ? | . |
\(v=66\) | Pairs | . | .. | . | ? | . | ? |
\(v=67\) | . | ✔️ | . | .. | . | ? | . |
\(v=68\) | Pairs | . | ✔️ | . | .. | . | ? |