Steiner Systems

A Steiner system \(S(t,k,v)\) is a collection of k-sized subsets (“blocks”) of the numbers 1 to \(v\). These collections are special because every t-sized subset of the numbers 1 to \(v\) are in exactly one block.

For example, here is a \(S(2,3,7)\) system (also known as the Fano plane):

{1,2,3}
{1,4,5}
{1,6,7}
{2,4,6}
{2,5,7}
{3,4,7}
{3,5,6}

I was introduced to Steiner systems from this review article. There is also good information on Dan Gordon’s page.

Some cool facts about Steiner systems:

Table of \(S(t, t+1, v)\)

Here are the divisibility rules for small \(t\) when \(k = t+1\):

  Divisibility
\(t=1\) \(v \ne 1\text{ mod }2\)
\(t=2\) \(v \ne 0\text{ mod }2\) and \(v \ne 2 \text{ mod }3\)
\(t=3\) \(v \ne 1 \text{ mod }2\) and \(v \ne 0 \text{ mod }3\)
\(t=4\) \(v \ne 0 \text{ mod }2\) and \(v \ne 1 \text{ mod }3\) and \(v \ne 4\text{ mod } 5\)
\(t=5\) \(v \ne 1\text{ mod }2\) and \(v \ne 2 \text{ mod }3\) and \(v \ne 0\text{ mod } 5\)
\(t=6\) \(v \ne 0 \text{ mod }2\) and \(v \ne 0 \text{ mod }3\) and \(v \ne 1\text{ mod } 5\) and \(v \ne 6\text{ mod 7}\)

I’ve listed a table below of small values of \(t\) and \(v\).

  \(t=1\) \(t=2\) \(t=3\) \(t=4\) \(t=5\) \(t=6\) \(t=7\)
\(v=1\) - - - - - - -
\(v=2\) Trivial - - - - - -
\(v=3\) . Trivial - - - - -
\(v=4\) Pairs . Trivial - - - -
\(v=5\) . .. . Trivial - - -
\(v=6\) Pairs . .. . Trivial - -
\(v=7\) . ✔️ (Fano) . .. . Trivial -
\(v=8\) Pairs . ✔️ . .. . Trivial
\(v=9\) . ✔️ . . .. .
\(v=10\) Pairs . ✔️ . . ..
\(v=11\) . .. . M\(_{11}\) . .
\(v=12\) Pairs . .. . M\(_{12}\) .
\(v=13\) . ✔️ . .. . …. .
\(v=14\) Pairs . ✔️ . .. . ….
\(v=15\) . ✔️ . x . .. .
\(v=16\) Pairs . ✔️ . x . ..
\(v=17\) . .. . x . x .
\(v=18\) Pairs . .. . x . x
\(v=19\) . ✔️ . .. . x .
\(v=20\) Pairs . ✔️ . .. . x
\(v=21\) . ✔️ . ? . .. .
\(v=22\) Pairs . ✔️ . ? . ..
\(v=23\) . .. . PSL\(_2\)(23) . ? .
\(v=24\) Pairs . .. . PSL\(_2\)(23) . ?
\(v=25\) . ✔️ . .. . ? .
\(v=26\) Pairs . ✔️ . .. . ?
\(v=27\) . ✔️ . ? . .. .
\(v=28\) Pairs . ✔️ . ? . ..
\(v=29\) . .. . . ? .
\(v=30\) Pairs . .. . . ?
\(v=31\) . ✔️ . .. . .
\(v=32\) Pairs . ✔️ . .. .
\(v=33\) . ✔️ . ? . .. .
\(v=34\) Pairs . ✔️ . ? . ..
\(v=35\) . .. . KNOWN . ? .
\(v=36\) Pairs . .. . KNOWN . ?
\(v=37\) . ✔️ . .. . ? .
\(v=38\) Pairs . ✔️ . .. . ?
\(v=39\) . ✔️ . . .. .
\(v=40\) Pairs . ✔️ . . ..
\(v=41\) . .. . ? . .
\(v=42\) Pairs . .. . ? .
\(v=43\) . ✔️ . .. . ? .
\(v=44\) Pairs . ✔️ . .. . ?
\(v=45\) . ✔️ . ? . .. .
\(v=46\) Pairs . ✔️ . ? . ..
\(v=47\) . .. . KNOWN . ? .
\(v=48\) Pairs . .. . KNOWN . ?
\(v=49\) . ✔️ . .. . ? .
\(v=50\) Pairs . ✔️ . .. . ?
\(v=51\) . ✔️ . ? . .. .
\(v=52\) Pairs . ✔️ . ? . ..
\(v=53\) . .. . ? . ? .
\(v=54\) Pairs . .. . ? . ?
\(v=55\) . ✔️ . .. . …. .
\(v=56\) Pairs . ✔️ . .. . ….
\(v=57\) . ✔️ . ? . .. .
\(v=58\) Pairs . ✔️ . ? . ..
\(v=59\) . .. . . ? .
\(v=60\) Pairs . .. . . ?
\(v=61\) . ✔️ . .. . .
\(v=62\) Pairs . ✔️ . .. .
\(v=63\) . ✔️ . ? . .. .
\(v=64\) Pairs . ✔️ . ? . ..
\(v=65\) . .. . ? . ? .
\(v=66\) Pairs . .. . ? . ?
\(v=67\) . ✔️ . .. . ? .
\(v=68\) Pairs . ✔️ . .. . ?